The micro-mechanics of single molecules studied with atomic force microscopy.
نویسندگان
چکیده
The atomic force microscope (AFM) in its force-measuring mode is capable of effecting displacements on an angstrom scale (10 A = 1 nm) and measuring forces of a few piconewtons. Recent experiments have applied AFM techniques to study the mechanical properties of single biological polymers. These properties contribute to the function of many proteins exposed to mechanical strain, including components of the extracellular matrix (ECM). The force-bearing proteins of the ECM typically contain multiple tandem repeats of independently folded domains, a common feature of proteins with structural and mechanical roles. Polysaccharide moieties of adhesion glycoproteins such as the selectins are also subject to strain. Force-induced extension of both types of molecules with the AFM results in conformational changes that could contribute to their mechanical function. The force-extension curve for amylose exhibits a transition in elasticity caused by the conversion of its glucopyranose rings from the chair to the boat conformation. Extension of multi-domain proteins causes sequential unraveling of domains, resulting in a force-extension curve displaying a saw tooth pattern of peaks. The engineering of multimeric proteins consisting of repeats of identical domains has allowed detailed analysis of the mechanical properties of single protein domains. Repetitive extension and relaxation has enabled direct measurement of rates of domain unfolding and refolding. The combination of site-directed mutagenesis with AFM can be used to elucidate the amino acid sequences that determine mechanical stability. The AFM thus offers a novel way to explore the mechanical functions of proteins and will be a useful tool for studying the micro-mechanics of exocytosis.
منابع مشابه
Effective Parameters in Contact Mechanic for Micro/nano Particle Manipulation Based on Atomic Force Microscopy
The effect of geometry and material of the Micro/Nano particle on contact mechanic for manipulation was studied in this work based on atomic force microscopy. Hertz contact model simulation for EpH biological micro particle with spherical, cylindrical, and circular crowned roller shape was used to investigate the effect of geometry on contact simulation process in manipulation. Then, to val...
متن کاملFinite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملImaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivit...
متن کاملAtomic Force Microscopy Application in Biological Research: A Review Study
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...
متن کاملMolecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy.
DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 520 Pt 1 شماره
صفحات -
تاریخ انتشار 1999